Parameter estimation of K-distributed sea clutter based on fuzzy inference and Gustafson-Kessel clustering
نویسندگان
چکیده
The detection performance of maritime radars is restricted by the unwanted sea echo or clutter. Although the number of these target-like data is small, they may cause false alarm and perturb the target detection. K-distribution is known as the best fit probability density function for the radar sea clutter. This paper proposes a novel approach to estimate the parameters of K-distribution, based on fuzzy Gustafson–Kessel clustering and fuzzy Takagi–Sugeno Kang modelling. The main contribution of the proposed method is the ability to estimate the parameters, given a small number of data which will usually be the case in practical applications. This is achieved by a pre-estimation using fuzzy clustering that provides a prior knowledge and forms a rough model to be fine tuned using the least square method. The algorithm also improves the calculations of shape and width of membership functions by means of clustering in order to improve the accuracy. The resultant estimator then acts to overcome the bottleneck of the existing methods in which it achieves a higher performance and accuracy in spite of small number of data. © 2010 Elsevier B.V. All rights reserved.
منابع مشابه
Comparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps
Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...
متن کاملEstimation of geochemical elements using a hybrid neural network-Gustafson-Kessel algorithm
Bearing in mind that lack of data is a common problem in the study of porphyry copper mining exploration, our goal was set to identify the hidden patterns within the data and to extend the information to the data-less areas. To do this, the combination of pattern recognition techniques has been used. In this work, multi-layer neural network was used to estimate the concentration of geochemical ...
متن کاملA Generalization of Gustafson-Kessel Algorithm using a New Constraint Parameter
In this paper one presents a new fuzzy clustering algorithm based on a dissimilarity function determined by three parameters. This algorithm can be considered a generalization of the Gustafson-Kessel algorithm for fuzzy clustering.
متن کاملADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
متن کاملPrediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods
Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fuzzy Sets and Systems
دوره 163 شماره
صفحات -
تاریخ انتشار 2011